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In this paper, we simplify and apply optical modelling of Bruggeman-type nano-composites, for calculation of the effective 
optical linear and nonlinear properties of nano-structured silicon, in particular of nano-porous silicon. We used laser 
excitation with photon energy close to the estimated band-gap energy of nano-porous silicon, looking for important optical 
nonlinearities at low intensity levels. This regime is non-perturbative for the nano-structured sample and we observe pure 
optoelectronic effects in np-Si. The effective refractive index and effective third-order nonlinear susceptibility, calculated with 
our simplified formulae, and the corresponding measured parameters in our experiments are in good agreement. 
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1. Introduction 
 
The nonlinear optical properties of nano-composites 

represent a topic of interest for photonics, because there is 
the hope that composite materials could display an 
enhanced and controllable nonlinear optical behaviour for 
photonic devices [1,2]. The nano-crystalline porous silicon 
(np-Si) can be considered as a particular example of nano-
composite.  

A number of authors studied the optical nonlinearities 
of nano-structured Si measured by transmission Z-Scan 
method [3-7]. Henari et al. [3] have been obtained, for 
porous Si, χ(3) = 7.74×10-9 esu, at λ = 665 nm                             
(I0 = 1.6×108 W/cm2). Vijayalakshmi et al. [4,5] have been 
reported the optical nonlinearities for silicon nanoclusters 
on quartz substrates, at λ = 355 nm and 532 nm. They 
estimated that linear refractive index for Si nanoclusters is 
n0 = 1.5 and got the experimental values for third-order 
nonlinear susceptibility as χ(3) = 2.28×10-5 esu                          
(at λ = 355 nm) [4] and Re{χ(3)} = (-1.33 ± 0.33) ×10-3 esu 
(at λ = 532 nm, I0 =0.03 MW/cm2) [5]. Lettieri et al. [6] 
have been reported the experimental values of below-gap 
nonlinear refractive index (n2) for different wavelengths. 
They have been considered that the linear refractive index 
of porous Si is n0 = 1.9 (λ = 633 nm) and the experimental 
values for nonlinear refractive index are                                        
n2 = (-5 ± 1.3) ×10-9 esu (at λ = 860 nm,                              
I0 = (1.4 ± 0.1) × 1012 W/m2),  n2 = (-3.9 ± 0.6) × 10-9 esu 
(at λ = 900 nm, I0 = (4.1 ± 0.4) × 1012 W/m2) and                      
n2 = (-6.6 ± 1.2) ×10-10 esu (at λ = 1064 nm,                             
I0 = (3.5 ± 0.4) × 1013 W/m2). K. S. Bindra [7] has been 
estimated that nonlinear refractive index is                                
γ = 2.4×10-15 cm2/W (at λ = 1064 nm, I0 = 3.5 GW/cm2).  

An important aim of this paper is to explain linear and 
third-order nonlinear optical properties of nano-porous 
silicon by using Bruggeman model [1,8,9], as this nano-
composite is very close to Bruggeman geometry. The 

nano-porous silicon is a network of air pores (holes) 
within an interconnected silicon matrix. The sizes of Si 
structures can vary from a few nano-meters to a few 
microns depending on the conditions of formation and the 
characteristics of the silicon.  

In order to use more easily Bruggeman formalism, we 
are derived a simple, but accurate, approximative formulae 
for the dependences of effective linear refractive index 
(neff) and for the third-order effective nonlinear 
susceptibility ( )3(

effχ ) on Si volume fill fraction (for np-Si). 
In our study, we are investigating optical nonlinearity 

of np-Si using a laser excitation with photon energy close 
to the estimated band-gap energy, at λ = 633 nm (hνl ≈ 
1.96 eV), looking for important third-order optical 
nonlinearities in nano-composites at low laser intensity 
levels. At these intensity levels, the nano-structures of np-
Si are not disturbed by thermal or other effects, so that 
pure optoelectronic effects can be studied. For measuring 

)3(
effχ , we have used the intensity scan (I-Scan) [10] and 

reflection Z-Scan (RZ-Scan) methods [11-13]. We are 
comparing )3(

effχ , predicted by Bruggeman model, with the 

experimental values of )3(
nPSχ  obtained by the intensity scan 

and reflection Z-Scan methods and we are showing that 
the data predicted by our simplified Bruggeman formulae 
are closer to our I-Scan experimental data (for np-Si). 

 
 
2. Structural and linear optical properties of  
     investigated nano-crystalline porous  
      silicon  
 
In order to measure the nonlinear optical parameters 

of np-Si, we need to know several linear properties of our 
samples. So, we studied firstly some structural and linear 
optical properties of our np-Si samples by using Atomic 
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Force Microscopy (AFM), photoluminescence and 
reflectivity measurements.  

In most of the cases, the porous silicon is realized by 
electrochemical anodization (in particular, electrochemical 
etching) of bulk silicon in hydrofluoric acid (HF). The 
investigated nano-porous Si samples were prepared by this 
method and a uniform layer of porous silicon was formed 
by etching. The porosity and the thickness of the layer can 
be controlled by the current density, the duration of 
etching and the HF concentration [1,14-16]. Our samples 
were aged for more than one year.  

Using an Atomic Force Microscope from Omicron 
Nanotechnology, we have obtained information about 
structure of the np-Si sample surface and sizes of nano-
structures up to ~ 40 nm (Fig. 1). From these data, one can 
derive the volume fill fraction of our np-Si samples, which 
is approx. 0.18. 
 

 
a 
 

 
 

b 
 

Fig. 1. AFM images of np-Si sample; (a) 2D image of np-
Si layer and (b) 3D image of np-Si layer 

 
Photoluminescence (PL) properties of np-Si layer 

were observed and measured with the experimental setup 
presented in Fig. 2. In order to study the PL characteristics 
of np-Si sample, we have used different excitation sources: 
a pulsed Nitrogen laser (λ = 337 nm, pulse duration tp = 4 
ns, pulse energy < 1mJ), the third harmonic of a pulsed 
Nd:YAG laser (λ = 355 nm, pulse duration tp = 3 ns, 
maximum pulse energy 20 mJ) and a c.w. laser diode            
(λ = 466 nm). The excitation light beam was collimated 
and filtered (to select the desired wavelengths only). The 

luminescence light emitted by the np-Si sample was 
transmitted by an optical fiber to a measurement chain 
(monochromator, photomultiplier and oscilloscope), 
connected to a computer for data acquisition and 
processing. 
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Fig. 2. Photoluminescence experimental setup 
 

Using these three excitation sources (337 nm, 355 nm 
and 466 nm), we obtained the PL spectra that are 
presented in Fig. 3a-c.  
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Fig. 3. PL spectra of the nano-porous Si excited with 
various wavelengths: (a) 337 nm, (b) 355 nm, (c) 466 nm. 
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These PL spectra show that the wavelengths of PL 

maxima are dependent on excitation wavelengths (Fig. 4). 
Increasing the excitation wavelength, the PL peak is 
obtained at higher wavelength. In order to make a better 
presentation of this dependence, we have introduced also a 
result obtained previously by Inanc et al. [16] for PL 
maximum, at 750 nm, when exciting the sample with light 
at 532 nm. From Fig. 4 we can see that this dependence is 
linear, which could be explained by the fact that, at short 
excitation wavelengths, all np-Si structures absorb the 
light, while at higher excitation wavelengths, the larger 
structures absorb preferentially. This result is in good 
agreement with that presented by Kux et al. [17].  

 

 
 
 

Fig. 4. Experimental dependence of wavelength of PL 
peak versus excitation wavelength (continuous line is 

theoretical fit of the experimental data) 
 
 

Due to the size distribution of the np-Si structures 
inside the sample, is not possible to define a unique band 
gap. According Kux et al. [17], Calcott [18] and Lettieri et 
al. [19], a good approximation of the band gap is about 0.2 
eV above PL peak energy. For our samples, we have 
estimated Eg ~ 2 eV.  

 
 
3. Linear and nonlinear optical properties of  
    np-Si described by Bruggeman model  
 
The properties of porous silicon can be described by 

Bruggeman geometry [1], because consists of two 
randomly intermixed components and the dimensions of 
the Si nano-structures are much smaller than the excitation 
light wavelength. In general, the Bruggeman model can 
provide theoretical estimations for the effective linear 
dielectric constant and for the nonlinear optical properties 
of nano-composites, including np-Si. According to 
Bruggeman model, the effective linear dielectric constant 
of np-Si layer can be described by the following equation 
[1,8,9]:  

0
22

=
+

−
⋅+

+

−
⋅

effair
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effSi
Si ff

εε
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where fSi and fair are the volume fill fractions of 
components (Si and air), εSi and εair are the dielectric 
constants of Si and embedded medium (air), εeff is effective 
linear dielectric constant of np-Si layer. From Eq. (1), we 
have obtained explicitly ),( SiSieff fF εε = : 
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and the effective linear refractive index as: 
 

.effeffn ε=                   (3) 

 
Calculating the effective refractive index with Eqs. (2) and 
(3), we observed that its dependence on the volume fill 
fraction is, in a good approximation, linear (for np-Si, at λ 
= 532 nm and λ = 633 nm) and we have derived the 
following simplified dependencies (Fig. 5): 
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Fig. 5. Dependence of neff  of np-Si versus fSi  for λ = 532 
nm si   λ = 633  nm  (the dots - calculated neff for different 
             fSi , the lines - linear fits using Eqs. (4) ) 

 
 

For fSi = 0.18, Eq. (4) leads to neff ≈ 1.31, (at λ = 633 
nm), which is in a good agreement with the corresponding 
value provided by the reflectivity measurements, neff = 
1.303.  

In these measurements (Fig. 6), we used a He-Ne laser 
(λ = 633 nm) beam at near-normal incidence. The 
experimental data, collected in different positions of the 
np-Si sample, were averaged in order to obtain a good 
estimation of the intensity reflectivity of the sample. Using 
a Fresnel-type relation between this average reflectivity 
and the effective refractive index, we have found neff ≈ 
1.303 for our np-Si sample, with fSi = 0.18.   
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np-Sinp-Si

 
 

Fig. 6. Reflectivity data of np-Si sample vs. measurement 
position on the sample. In our case, fSi = 0.18 and the 
average effective linear refractive index, neff ≈ 1.303              

(λ = 633 nm). 
 
 

The nonlinear optical properties of a Bruggeman 
structure can be described by a statistical theory based on 
the assumption that the electric field within each 
component is uniform. This theory predicts that there is 
possible to obtain a small contribution of the nonlinearity 
to the nonlinear optical response. The effective nonlinear 
susceptibility can be determined with the formula derived 
by Boyd et al. [8, 9]: 
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In the case of our np-Si sample, we have only one 
nonlinear component, i.e. silicon, because the air is linear 
at the laser intensity range used in our experiments. 
Consequently, Eq. (5) becomes: 
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Using Eq. (6), we found a simple approximative quadratic 
dependence of the np-Si effective nonlinear third-order 
susceptibility on the Si volume fill fraction (at λ = 633 
nm): 
 

.48.048.1 2
)3(

)3(

SiSi
Si

eff ff ⋅−⋅≈
χ

χ   (7) 

 

 
Fig. 7. Theoretical predictions of our simplified Bruggeman 

formula (7)  for )3(
effχ  plotted as a function of fSi 

 

Fig. 7 shows the quadratic increase of )3(
effχ  with fSi, 

which correctly tends to 1, when fSi → 1 (although this 
formalism is more accurate for low fSi). 

 
 
4. Third-order nonlinearity experimental  
     investigation by intensity scan and  
     reflection Z-Scan methods 
 
Theoretical prediction for the third-order effective 

optical nonlinearity, )3(
effχ , obtained with simplified 

Bruggeman formula (7) was experimentally verified by I-
Scan method [10] and open-aperture RZ-Scan method [11-
13].  

The experimental setup is presented in Fig. 9, for both 
I-Scan and RZ-Scan methods. In the open-aperture RZ-
Scan method, the investigated sample is moving along the 
incident beam direction, passing through the focal plane of 
a focusing lens and the reflected signal is measured by a 
measurement chain consisting of photo-detector, 
oscilloscope and PC. In the I-Scan method, the 
investigated sample is placed at approximately a Rayleigh 
length behind the focal plane of the lens and the laser 
intensity is varied. The samples are irradiated by a focused 
c.w. Gaussian beam (He-Ne laser, λ = 633 nm). 
 

 
 

Fig. 8. I-Scan and RZ-Scan experimental setup: c.w. 
laser (He-Ne or diode) (λ = 633 nm), L1, L2- lenses (f1= 
12.5 cm, f2 = 10 cm), BS – beam-splitter, F – neutral 
filter, Det. – photo-detector. For RZ-Scan, the sample is  
   moved with a mobile platform, controlled by a driver. 
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In RZ-Scan method, the open-aperture nonlinear 

normalized reflection (the ratio between the power 
reflected by the sample with and without the nonlinear 
effect) was derived as [13]: 
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where: I0 is the laser beam intensity in the focus                        
(I0 = 6.35×106 W/m2), λπ 2

0wzR =  is the Rayleigh 
length of the beam (in this setup, zR = 1.2 cm) and w0 is the 
beam waist. In the case of measurements on bulk Si 
sample, neff = n0Si and )3()3(

Sieff χχ = . 

For I-Scan method, we can use the same formalism as 
in the case of RZ-Scan, which leads to the nonlinear 
normalized reflection dependence on intensity: 
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where: z1 is the distance behind the focus (z1 = 1 cm), 
where the sample is placed, and  I is the laser beam 
intensity at distance z1 from the focus.  
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Fig. 9. I-Scan experimental data of )3(

Siχ  si )3(
effχ  

 
For a good verification of the Bruggeman theoretical 

prediction, we experimentally measured the third-order 
nonlinear optical susceptibilities of a crystalline Si wafer 
(c-Si) (n0Si = 3.873) and a np-Si sample (neff = 1.303). The 

I-Scan experimental data presented in Fig. 9 are fitted with 
formula (9) and the values of third-order optical nonlinear 
susceptibilities of c-Si and np-Si samples, )3(

Siχ  and )3(
effχ , 

are obtained. In Fig. 10, we show the RZ-Scan 
experimental data, which are fitted with the dependence 
from Eq. (8) in order to get )3(

Siχ  and )3(
effχ .  

In Fig. 11, we present the theoretical predictions of 
)3(

effχ  given by our simplified Bruggeman formula (7) and 
the experimental results obtained with I-Scan and RZ-Scan 
methods, for a sample with fSi = 0.18. 
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Fig. 10. RZ-Scan experimental data of )3(

Siχ  si )3(
effχ  

 
When compared with the RZ-Scan experimental data, 

the I-Scan measured optical nonlinearities are in better 
agreement with the data predicted by our simplified 
formula. The theoretical prediction calculated with (7) is 
( ) 3)3()3( 1078.1 −×=Sieff χχ . 

 
Fig. 11. Theoretical predictions of )3(

effχ  given by our Eq. 

(7) and the experimental results obtained with I-Scan and 
RZ-Scan for our np-Si sample, with fSi = 0.18 



Study of the third-order nonlinear optical properties of nano-crystalline porous silicon using a simplified Bruggeman formalism  825 
 

By I-Scan, we obtained a value of 
( ) 3)3()3( 107.6 −×=Sieff χχ , which is in a reasonable 
agreement with simplified Bruggeman prediction. By RZ-
Scan, we have obtained 2)3()3( 1003.3 −×=Sieff χχ . There 

are several reasons, for which the I-Scan method gives 
better results than RZ-Scan method in the measurement of 
the third-order optical nonlinearities. First, the sample is 
never passing through the focal plane, where it is exposed 
to a large irradiance (like in the case of RZ-Scan method). 
Second, the total exposure time is reduced and the thermal 
effects and other sample distortions are smaller. Third, the 
same area of the sample is illuminated during the 
experimental measurements.  

 
 
4. Conclusions 
 
This study brings contributions to the simplification of 

Bruggeman model for nano-composites, applies the 
simplified relations in the study of linear and nonlinear 
optical properties of the np-Si samples and experimentally 
confirms the validity of these relations. We have 
experimentally determined, for np-Si samples with                   
fSi = 0.18, the effective refractive index, neff = 1.303, and 
the ratio between effective third-order nonlinear 
susceptibilities of np-Si and bulk Si, respectively, 
( ) 3)3()3( 107.6 −×=Sieff χχ  (with I-Scan), which is in a 
reasonable good agreement with the prediction of the 
simplified Bruggeman formalism.  
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